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ABSTRACT 

We prooose a class of spontaneously broken locally 

supersymmetric grand unified theories, where both, the weak 

doublet and the color triplet of Hiqqs are massless in the 

supersymmetric limit. Due to supersvmmetrv breakinq, the 

Higqs triplet acquires a mass of order &%(slOl'GeVI at the 

one 1009 level, m and M beinq the gravitino mass and the 

grand unification mass respectivelv. The. Higgs doublet 

acquires a vacuum expectation value !vev\ of orfler 4ZZ 

(S106.5 GeV). Starting from a higher grand unification qauqe 

group e.g. W(6), we can push down the SU(3~xSU(2)~xU(l.) 

breakinq scale to the same order of maqnitude as the 

gravitino mass m (SlO%eV). These models naturally admit 

invisible axions with ?ecay constant of order &% 

(SlOlOGeV). 
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I. INTRODTJCTION 

Supersymmetric grand unified theoriesI are of 

interest at present, since they provide a partial solution 

of the hierarchy problem[21. In the exactly supersymmetric 

limit, once a large mass hierarchy is established at the 

tree level, it remains stable under radiative corrections. 

But since supersvmmetry is not a good symmetry of nature, its 

must be either softly or spontaneously broken in such a way 

that the large mass ratios still remain stable under 

radiative corrections. A more recent approach to the 

problem[31 starts with a locally supersymmetric grand 

unified theory, with supersymmetry spontaneously broken by 

the super Higgs mechanism. The super Hiqgs sector is 

coupled to the observable sector (which involves all the 

usual fields in the SU(5) GUT) only through the effect of 

gravity. In such a case, the effective Lagrangian in the 

observable sector may be written as a sum of the exactly 

supersymmetric SU(5) Lagrangian and a set of soft 

supersymmetry breaking terms, whose mass scale is set by the 

gravitino mass. 

But even if supersymme trv can protect the mass 

hierarchy from radiative corrections, there remains a second 

hierarchy problem, why is the colored Higgs triplet so heavy 

compared to the SU(2) doublet? Two different mechanisms 

have been proposed to answer this question, the sliding 
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singlet mechanism[41 and the missing partner mechanism[Sl. 

Of these, the sliding singlet model has been shown to be 

unstable under soft supersymmetry breakingL61. Under one 

loop radiative corrections the Higgs doublet acquires a mass 

of order G, where m and M are respectively the gravitino 

mass and the grand unification mass. The missing partner 

model is free from this problem, but it requires a larqe 

number of Higgs. 

It has also been pointed out that in supersymmetric 

GUTS, in order to get the correct bacyon to photon ratio in 

the present universe, the triplet~Higqs mass has to be of 

order 1olOGev , wh.ich is considerably lower than the grand 

unification mass. We may call this the third hierarchy 

problem. In this paper we propose a class of models in 

which both the doublet and the triplet of Higgs are massless 

in the exactly supersymmetric limit. When we introduce the 

soft supersymmetry breaking term, the triplet Higgs acquires 

a mass of order 6, whereas the doublet Higgs acquires a 

vacuum expectation value of order rfi, due to radiative 

corrections. Taking WlO"GeV , and m*103GeV, we get a 

triplet mass of order 101'GeV, and a doublet Higgs vev of 

order 106.' GeV. On the other hand, if we start from an SU(6) 

gauge theory and assume that it breaks down to 

su(3)xsu(3)xu(l) at the GUT scale M, then it is possible tp 

arrange that the residual symmetry breaks down to 

SU(~)XSU(~)XU(~) at a scale of order v&?%? and the 
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SU(~)XSU(~)XU(~) symmetry is broken to SU(3)xU(l) at a scale 

of order m. These models contain ~~(3)xSU(2)xU(l) sinqlet 

fields with vevslO1' GeV and hence one can introduce 

invisible axions in these models, with decay constant fl 

10LoGeV, without the need of fine tuninq any parameter. 

Sec.11 of the paper gives an example of the class of 

models 

generated 

we expla 

The axion 

lolOGev. 

where the doublet and the triplet masses are 

by the one loop radiative corrections. In Sec.111 

n how to introduce invisible axions in our model. 

decay constant naturally comes out to be of order 

In Sec.IV, we propose a model, based on the Su(6) 

gauge group, in which the SU(3)xSU(2)xU(l) breakinq scale 

may be kept as low as the qravitino mass. We summarize our 

results in Sec.V. 
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II THE MODEL 

Our model consists of a set of heavy superfields Q, R, 

k which, for definiteness, will be taken to be in the 24, 

LO and ?? representations of SU(5). We also have a set of 

light superfields E(24), S(l), HCi) (5) and ici' ('5), where i 

runs over the number of Higgs multiplets we want in the 

theory. 

The superpotential is, 

W= $ M, +'+ 2 A,+'+ rvl,R: + A, +'e i? +;f&Z3 

+ *< A;’ z ;;ti, )+‘i’ +Ag A:;’ p ;,i, )p’ +&m?Z (I) 

where the mass parameters Mi are of the order of grand 

unification mass. For simplicity, we have drooped all the 

group indices, and also the quark-Higqs interaction terms. 

In the supersymmetric limit, Q acquires a vev of order 

Ml/Xl, which breaks SU(5) to SU(31XSU(Z)XU(l). There are, of 

course, other deqenerate vacua which are SU(5) symmetric and 

SU(4)XU(l) symmetric respectively, but we do not consider 

them here. All the other fields have zero vev. The fields 

C, S, HCi) and ici) remain massless in this limit. 

The effect of supersymmetrv breaking by super-Higgs 

mechanism is to introduce soft supersymmetry breaking terms 

in the action of the form[31, 
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i-d’& y ( E y; ;$f i 
+(A-3)wcy))+ Fc(d+- 7 7 y;yi 

A 

(3) 

m being the gravitino mass. yis denote the set of all 

superfields Q, Z, R, R, s, H(i) and i(i). Due to the 

presence of these explicit supersvmmetry breaking terms, 

there will be higher loop radiative corrections to the 

effective action of the form[Sl 

P@ 3% xi, q, y;, (9) 

where f is a polynomial in n, t, y, y and their covariant 

derivatives. The terms responsible for producing larce 

masses or vev's of the light fields have the following form, 

In the above equation, C, S, Q denote the first componentsof 

the corresponding superfields, whereas FE ' FS denote the 
auxiliary components of the corresponding superfields. fis 

are functions of there arguments. Typical diagrams 

contributing to fl and f2 in one loop order have been shown 

in Fig.1. For simplicity, we shall drop the functions f3 

and f4 in our future discussion, since they do not 

qualitatively change any of the discussions that will 

follow. Typically, fl*M, Q; f2fl<C>,<S>. We have ignored the 
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Z or S dependence of fl, since, as we shall see, <C> or <S> 

are small compared to CO> or M. We shall carry out the 

analysis including terms of the form mFCfl+mFSf2 in our 

Lagrangian, but throwing away all other terms which may 

arise from (4). The important point to note is that there 

is no coupling of FS to the grand unification scale M. The 

first FSM coupling comes at the three loop level, which can 

he kept sufficiently small (SFSf2). 

Adding (5) and (2) to the Laqranqian qiven by the 

superpotential W in (l), and eliminating the F components of 

various fields through their equations of motion, we get the 

effective potential, 

v= $1 M,+ tX,(+=& +X2(~~~~C(L+.~1MzR-C~~~RCA.rR]= 

+ &(&& + mf, ~%M~~= + $ tA& df’ cH (‘1 P), + w f; <-zy 5) I’ 

+ .$ $ 
1. -1 

I ,y, s ).pJ + $ r j-p I’ + p g /Al”’ ECil r + A:’ ;i’tij I’ 

+m CA-i)< M, d+M,RkYf +mA{h, +3+h,HRz t &X3 

where the various fields in (6) denote the scalar part of 



the corresponding superfields. The vacuum expectation value 

of @ is determined by minimizing the first term, we assume 

that the W(5) symmetry is broken to SU(3)xSU(Z)xU(l) bv the 

vacuum expectation value of @. The vacuum expectation value 

of C is obtained by minimizing the fourth term. This gives, 

rr>= u ' 
I 

i -:I 

01 
I 

-2 

2 
where vN% since fl(@,M) fl M. The vacuum expectation values 

of s, ,(i) and ici) are obtained by minimizing the fifth, 

sixth and the seventh term, and the m21Sl 2 term. Assuming, 

v i 12 (8) 

we have the following three minima, which are the possible 

candidates for the ground state. 

(A) <s(i)>=<;(i)>=O, <S> is obtained by minimizing, 

Im$; C<~>,SllZ+m~IS1z 

If for definiteness, we take f2 to be linear in CC> and S, 

55 c<=>, s) = p,v+p1325 

we get, 

<s> = -pt pz w/ cltp,=) 

and the potential at the minimum is, 

L/,‘, = wyy IF’/ (I tp 

(4 

(12) 



(B) 

<s> r -u, Jjt” /A;’ <H,;‘) = <y> =o i= 9,s 

if- < f-t;> < y’> =-b-J f2 (dir>, -~l2h(,“/,c+;‘) /A‘; 
,C=1 

GJ, 

V, in. = m2 19~ ($‘/A’;’ )’ 

(C) 
<s> - 3 ‘Lp h(L’ /$ ) 0-q’) = <-q”> = 0 i= 1,2,3 

5 <l-p><qy 
i..=‘, 

=q.& (<+T>,S e- x;‘LAwG 

p-1 

v?n;n. = 3 )h’v” ($$q’)Z W 

We want the case (C) to be the physical minimum. But 

as we can see, the V min. in this case is always larger than 

Vmin. in case (B). This problem may easily be avoided by 
. - 

adding an additional singlet field u which couples to RR, HH 

and has a self coupling proportional to u 3 , in the same way 

as C. <*> contributes to the mass of Y, fi. Then, by suitably 

adjusting the parameters of the theory, we may arrange that 

the state of the system, where the weak doublet Higqs is 
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massless, has less energy than the state where the color 

triplet higgs is massless. 

However, even in the present case, if, 

(171 

and x;l',x (1) 
5 has the same sign as -Bp2/(1+B;), the 

effective potential, expressed as a function of S (by 

minimizing with respect to the H, H fields) have the form oft 

Fig.2. Thus, if we start from the S=O state in the early 

universe, then, as the universe cools down, it rolls down 

towards the minimum given by the case (C), and gets trapped 

there with a very large life-time, since the seperation 

between the minima (B) and (C) (* v) is much larger than the 

difference in energy density between the two minima (4iiG). 

In this case, the Higgs doublets acquire vev of order &, 

as given by (15). Taking iWlO"GeV , m*103GeV, we get 

<s>s<~>s1olOGev which is the mass of the Higqs triplet, 

whereas <H>~<&:&sl0~'~GeV. This is 10' times too large 

compared to the physical value. A possible mechanism to 

push it down to the same order of magnitude as the gravitino 

mass will be discussed in Sec.IV. 



11 

III. SNVISIBLE AXION 

Besides keeping the color triplet Higgs at an 

intermediate masse, our model has an extra advantage that in 

these models one can naturally introduce an invisible axion 

with fA*lO10 GeV. Since the presence of an invisible axion[91 

requires the presence of an SU(2)xU(l) singlet field, which 

couples to the Higqs doublet, acquires a vev%lO'GeV, and 

still does not produce a large mass of the Higqs doublets, a 

natural way to introduce it is to have it as a sliding 

singlet. To give an example, let us introduce two sinqlet 

fields Sl and S2 with the coupling, 

in the model of Sec.11. Let us, for the time being, assume 

that H(l) couples to the quark bilinear 10x10, and ;I(21 

couples to the quark bilinear 10x?. Then the model has a 

symmetry, 

-t29 l-f ie N (2) die 
4e H, 5, -e e -5 , 

.s;, -e e-g sz (191 

together with the appropriate transformation of the quark 

lepton fields. This serves as the Peccei-Quinn 

symmetry[lOl. When we minimize the potential (which now 

includes terms of the form mFS s;f(S,Sl,s2,C) etc. 
1 

coming 



from (4)), for a certain range of values of the oarameters, 

the minimum of the potential lies at a non-zero vev (AI) for 

3' Si and S, such that the mass matrix of the doublet Hiqqs 

has a zero eigenvalue, and a vev of order 6%~ for the 

doublet Higgs. Thus the Peccei-Quinn symmetry is broken by 

a large vev (slOl'GeV) of Sl and S2, givinq rise to an 

invisible axion with fAz10 10 GeV. 

This particular model, however, has dimension five 

operators contributing to the prpton decay amplitude because 

of the H(1)i(2) mixing term. This may he avoided by 

expanding the Higgs sector. We introduce new fields H'(l), 

iI Cl), H' c2), iI(X) belonging to the 5 and ? 

representations, a s~n$etS: c4b the coupling tlr the s+rpotentiat, 

..jj A;i) t s,(r, H~fi) +k ,$p ~1 29 HJfi' + q,'s, fi1i-J >rCU 
i -, i=t 

+ o(~’ c-, H’CtJ s/O1 
(20) 

We couple H(1) to the quark bilinear 10x10 and i1(2) to the 

quark bilinear 10x7. We define the Peccei-Quinn symmetrv of 

the model as the transformations (191, together with similar 

transformations on the primed fields. For a finite range of 

values of the parameters,the vev of S, S', sl, s2, will be 

such that the mass matrix of the HCi) , G(i) sector, as well 

as that of the primed sector, has a zero eigenvalue. The 

P-Q symmetry is then broken at a scale of order 101'GeV. The 

primed, as well as the unprimed doublet Higgsesacquire vev's 

of order fi, producing the necessary masscrfor the quarksan& 

Lektons. 
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IV. A MODEL BASED ON THE W(6) GAUGE GROUP 

In this section WY shall consider a model based on t'le 

X(6) gauge group.' The basic iclea iz the ~sarne as in Sec.11, 

but there are sunny i:;lpo:tant differences that will become 

clear as we proceed. The heavy fiel:ls contain an adjoint @, 

a singlet o. and (6, 6, pair (R, R). The light fie,l<lb 

c:c>II~:,~~I~ two adjoint fields x and I, a singlet So, n pairs of 

(6, a) of higgses (HCi), GCi)) (i=l,...n) and n singlets 

s(i). The superpotential is, 

W= h,&3+&i&8-P4:+, tM,R~++3z%b7R 

+/3, XR? +fJ,s,& + ~J.x~~ f- 2? $‘+“R; i -1 

There are two important differences between this 

superpotrntial and the superpotential we considered in Sets. 

II and III. First, note that the slidinq singlet fields 

Sci) couple to the heavy fields R, - R, so that 7 
,(i! wi.11 now 

have a coupling of the form F mf (0, M) due to one loop 

radiatille corrections. ThisSi::l force Hci)GCi) to acquire 

a vev of order mMs(101°GeV)2, but, as we shall see, this is 

not ,3 problem in this case, since H (i) 6 may be made to 
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acquire a vevJl3l'??V. Secondly, there is no coupling of the 

form ,,(i),(j) with i#j , so thati. tl>ei-e is no PC, symmetry 

which is hroken by the vev of a singlet fielc-1. RI1 I-. i:h / * i. j 

:1ot (i!, a problem either, since X6 J .acquire vev*lO"Gev, and 

hencz '-It-eaks any PQ symmetry which invoi.vrs ‘j i,,!~ra;?; 

Transformation of the 9 (i) ,s. 

In the supersymmetric limit, the po tr ,I ': i 0 Y x >'>t,ained 

from the superpotential in (21) has a minimum at, 

<A> = 0 <$>=MI ’ 6x2 ‘, 
c :’ 

(-=I -/ -1 -I 
while ai.i the r>t'lnr fields acquire zero vev. Again, there 

are other degenerate minima ,d,ith 3ifferent unbroken symmetry 

groilp, but we ignore them here. The potential vanishes at 

the minimum, an11 hence supersymmetry is unbroken, which can 

be seen by using the identity 

(<!F,‘).. = &>‘- 2 -t-i- -e>’ =o 

Ihe vev given in (22) breaks the SU(6) symmetry to 

SU(3)xSU(3)xU(l) at a scale of order MlJlO 16 GeV. If we now 

take the effect of the supersymmetry breaking terms into 

account, then diagrams similar to the ones shown in Pig.1 

(give rise to the terms in the effecti.ve action of the form, 
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where the functions fl,...fiiJ are each of oc:le:r- M. Tie F 

components of various light fields may now be obtained by 

using the eqnatisns of motion: 

FL = WI (S‘Z) 

SC” = cr’, (XT)1 + hS2 csF,M) + p2(Rai 

%* = tit ( SC x) 4 f *ii’ (jffi’ j?li’)j5 + fd(+ )js+Wj j:,cs;,n) i:, 

F ‘. SfJ-I = K;) ( bti’ zfil )I + ?-t-, 3;” < +, ,.,) + $’ (KE)l 

(25) 

Using the fact that (R>,(R)=0 (since they have mass of 

,?r:.le r M) , and that f 1 and f3 are proportional to <Q>, we may 

minimize the potential by setting each of the F's in (25) to 

% zero by vev of various fields of the form: 

<r>=a,s 1 
c 1 

a>= I I -1 --I -I 
<s,> = a+ v 

</p) = <;l;,‘i’> = &‘@ 1 I’ i c q 

Q-i?> zz <jy>=o i<t’Sr, , I <ml<5 

< .s-(” > = (xci)/ &ii) ) a, u 



16 

(i) where al,..."5 are nlnnbrc~ ,>f order unitv, calculable in 

terms of the functions (i! fl,...f4 and v=&+lO1snJeV. The 

important point to note is that the vev of the sliding 

si:lgl~ts S (i) , which keep A (i) "(i) S and H6 massless, also keeos 

Hii), ,(i), H 
5 -ii) and ip massless. One linear ccznbinatic,rl 

i) f these fields is absorbed by the gauge bosons which then 

btxomt mnss ive, thus breaking the SU(3)xSTJ(3)xJJ(l) symmetry 

to su(3)xsu(2)xu(I). LAt this point we should mention that 

there are other degenerate vacua, where the gauge group is 

broken to SU(3)xIJ(l), or to SU(3) at a scale of order 
10 IO. 2eV, since the vev of the different H fields may be 

directed in different directions. A detailed study of the 

contribution from the higher order terms is needed to 

determine which vacuum has the lowest energy. In the rest 

oE the paper we shall assume that the SU(3JxSU(2)xU(l) phase 

has the lowest energy.] Another linear combination oC the 

fields gets mass from the D terms, so as to produce a 

complete massive vector supermultiplet. The rest of the 

N(i), i(i) 
m m (m=4,5) fields remain massless at this level. 

These field:; :aay then acquire vev of order m through 

radiative corrections as discussed in Ref .(lll. 

The quark fields may be choosen to belong to the 2, z, 

15 and 20 representations of W(S), which we denote by Qi'), 

Q&? Q15, and Q20 respectively. They get mass frtm the 

following coupling to the Higgs fields, 

f t ay Q; rg ,5 ‘;; (iJ + X(i) 61.;’ qs i3”“ + yJCLJ 4,s 612, H li’ 3 

+ Y, Q,, Q20 z (z7) 
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To see that this produces tie c:>fl.ecct low enerqy 

spectrum of the quark lepton fields, let us consider the 

.A:-composition of these fields in terms of r-presentations oE 

the S(5) subgxup of W(6): 

IS-- lot 5 

c?o4 ro+ro w 
Thus the first term produces a mass term: 

{ (F k+'< Fp'>) t&l + 5 Tti'-&? c& f cs;,‘,,) 

where Q5(ls) denotes the part of Ql5 which transformS ds the 

5 of SU(S), and similarly for the others. (29) produces a 

mass OE order Y COC the 5 component of Q15 and a 1.inear 

combination of the ? components Of Qi" and Q$*'. The 

orthogonal iinear combination does not acquire a mass ,at 

this level, but combines with the 10 component of Q15 to get 

A mass of order m from the third term in (273. Th~is arises 

due to the vev of iii' of order m. 

The third and the fourth terasin ~27)~ on the other 

hand, produces a mass term of the form: 

(2 p .A=# ( H&Y’> QlOOS) + -5 <r> qotro, ) Q, (&, (30) 
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Thus a particular linear combination of Q lO(15) and QlO(20) 
combines with QlO (20) to acquire a mass of order v. The 

orthogonal combination of QlO (15) and QlO(20) remains 

massless at this. order, but gets a mass of order m through 

the combination, 

It is easy to introduce a Peccei-Quinn symmetry in this 

model and to prevent dimension five operators to contribute 

to the proton decay amplitude, by setting some of the y's to 

be zero. (e.g. all the y's except vi'), vi2), ~4~) and y4 

are zero.) The Peccei-Quinn symmetry, involving unequal 

phase transformations on the H(i)rs, is broken at a scale of 

order vslO"GeV due to the vev of Hii), thus giving rise to 

an invisible axion with decay constant of order 10 1°GeV . 

In this class of models, the SU(6) symmetrv is 

spontaneously broken down to SU(3)xSU(3)xU(l) at a scale of 

order 1016 GeV, which breaks down to SU(3)xSU(2)xU(l) at a 

scale of order lO"GeV . This may be a good news for the 

prediction of sin2Qw, since it usually comes out to be too 

high in supersymmetric grand unified theories. In the 

present model, with sin2Qw='215, and three pairs of light 

Higgs doublets, the SU(2)W and SU(3)' coupling constants 

meet at a scale of order 10IOGeV . Above this scale the 
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coupling constants of the two unbroken SU(3) subgroups run 

together and meet the coupling constant of the U(l) subacoup 

at a scale of order 1016&v. 



CONCLUSION 

In this paper, we have given examples of spontaneously 

broken, locally supersymmetric grand unified theories, with 

a natural solution of the hierarchy problem. In these 

models, the doublet Higgs, whose vev breaks the SU(Z)wU(l) 

symmetry, and its color triplet partner are massless in the 

supersymmetric limit. Due to supersymmetrv breakinq, and 

the existence of light SU(3)xSU(Z)xU(l) singlet fields, the 

color triplet Higgs acquires a mass of order v=&% from the 

one loop radiative corrections, where M is the grand 

unification scale and m is the gravitino mass. The doublet 

Higgs is prevented to have a mass of order v by the sliding 

singlet mechanismlll. But in the simplest SU(5) grand 

unified theory, it acquires a vev of order v'mv. Taking 

ms103GeV and W1017GeV , we get a colored Higgs triplet of 

mass of order 101'GeV, and a Higgs doublet of vev of order 

106'5Gev . However, by starting with a bigger gauge group, 

e.g. Su(‘5), we may construct models where the SU(2)"xU(l) 

breaking scale is of order m. In these models, we 

necessarily have an unbroken gauge group bigger than 

SU(3)xSU(2)xU(l) above lOl%eV , which breaks down to 

Su(3)xSu(2)xU(l) at this scale. 

In the models of the kind considered in this paper, one 

can naturally introduce invisible axions without the need of 

fine tuning any parameter. The axion decay constant turns 
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out to be of order ~~10 10 GeV, which lies in the narrow range 

of values allowed by the present cosmoloqyCl21. 

There are however many technical details which rema in 

to be studied ( e,g. the evolution of various coupling 

constants and mass parameters, as governed by the 

renormalization group equations, the domain wall problem, 

etc.). The possibilitv of constructing a realistic model, 

based on the ideas developed in this paper, is under 

investigation. 

ACKNOWLDGEMENT 

I wish to thank W. A. Bardeen and T. Taylor for useful 

comments and criticisms. 



22 

REFERENCES 

[ll S. Dimopoulos and H. Georgi, Nucl. Phys- --__ 8193 

150, N. Sakai, 2. Phys. ___ Cl1 (1981) 153. 

[21 E. Gildener and S. Weinberg, Phys. Rev- _-- D13 

3333, E. Gildener, Phvs. Rev. _Dl+ (1976) 1.667. 

(31 L. Hall, J. Lykken and S. Weinberg, Texas Univ. 

No. UTTG-1-83, and references therein. 

141 D. V. Nanopoulos and K. Tamvakis, Phys. Lett. 

(1982) 151. 

(1981) 

(1976) 

Reo. 

1138 ---- 

[5] H. Georgi, Phys. Lett. 108B (1982) 283, A. Masiero, ---- 

D. V. Nanopoulos, K. Tamvakis and T. Yanagida, Phys. Lett. 

115B (1982) 380, B. Grinstein, ---- Nucl. Phys. gLm5 (1982) 

387. 

[6] J. Polchinski and L. Susskind, Phys. Rev. - (1982) D26 

3661, H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. 

124B (1982) 337, A. B. Lahanas, Phys. ---- Lett. i24_B (1982) 

341. 

[71 D. V. Nanopoulos, and K. Tamvakis, Phys. Lett. IlOB 

(1982) 449, ibid. &!2g (1982) 151, ibid. &&SE (1982) 235, 

D. V. Nanopoulos, K. A. Olive and K. Tamvakis, Phys. Lett. 

1158 (1982) 15, A. Masiero et. al. ---- Ref. [51. 

[81 M. T. Grisaru, W. Siegel and M. Rocek, Nucl. Phys. 

_Bizz (1979) 429, L. Girardello and M. T. Grisaru, Nucl. 

PhYS* ---- B194 (1982) 65 

[9] fi. Dine, We Pischler wd M. Srednicki, Phys. Lett. 

_1g42 (1981) 199 



23 

[lo] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 18 

(1977) 1440, Phys. Rev. _Dig (1977) 1792. 

1111 L. E. Ibanez, Nucl. Phys. __ B218 (1983) 514, 

L. Alvarez-Gaume, J. Polchinski and M. B. Wise, Nucl. Phys. 

8221 (1983) 495 and references therein. ---- 

FL21 D. A. Dicus, E. W. Kolb, V. L. Teplitz and 

R. V. Wagoner, Phys. Rev. gig (1978) 1829, Phys. Rev. 

D22 (1980) 839, M. Dine and W. Fischler, Phys. Lett. 120B --- ---- 

(1983) 137, J. Preskill, M. B. Wise and F. Wilczek, Phys. 

Lett. 120B (1983) 127, L. F. Abbott and ---- P. Sikivie, Phys. 

Lett. LzO_g (1983) 133, M. Fukugita, et. al. Phys. Rev. 

Lett. $j (1982) 1522. 



FIGURE CAFTIONS 

FIG.l: Typical subergraphs contributing to fl(O,M) ((a) and 

(b)) and f,(C,S) ((c) and (d)) respectively. The external 

lines, marked F, imply that we choose the F components of 

the superfields from these lines. From all other external 

lines, we choose the first components of the superfields. 

FIG.2: The effective potential as a function of S. 
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